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Abstract

Many new technology initiatives that rely on vehicle autonomy capabilities have emerged in
recent years. One prominent concept is based on Autonomous Mobile Robots (AMRS). In such
systems, small wheeled robots provide point-to-point deliveries on sidewalks at pedestrian
speed. They are powered by small batteries, limiting their service range to around 3 km.

The system considered in this work consists of a fleet of vehicles distributed in multiple
mini depots along the service area. These robots are assigned to service requests characterized
by pick-up and delivery locations and corresponding service time windows. We examine the
potential of enhancing the service by public transit. That is, allowing the robots to fulfill parts
of their journey on board public transit vehicles. As the robots do not discharge while traveling
on board the public transit vehicles, this extension comprises multiple opportunities. First, the
service range can be extended, and, in some cases, service durations can be shortened. Second,
the overall energy consumption can be reduced. This work focuses on the operational planning
problem in the studied AMR based services, consisting of assignment, routing and timing
decisions. The problem represents a special case of the well-known Pick-up and Delivery
Problem (PDP), with full truck load and multiple modes of transport. We develop two mixed
integer programming formulations for the problem: an arc-based formulation and a route-based
formulation. The arc-based formulation explicitly represents each robot's potential leg and
decides upon the legs to be travelled. The latter considers complete feasible routes with the aim
of selecting the best route (and robot) for each request. While the route-based formulation has
a more compact structure, the number of routes that may be considered grows exponentially
with the network size. To overcome this, we develop a column generation approach.
Specifically, we define an initial set of potentially good routes for each robot-request pair and
then formulate the underlying sub-problem of finding new promising routes as a resource
constrained shortest path problem. We develop a four-stage dynamic programming algorithm
to solve the sub-problem. Subsequently, by exploiting robot-request symmetries we can reduce
significantly the number of sub-problems solved at each iteration. In addition, as the robot-
request sub-problems are independent, we apply parallel computing to solve multiple sub-
problems simultaneously. These actions allow us to reduce the computing time required for
each column generation iteration.

The numerical experiment results show that the column generation approach can solve
instances with up to 150 requests in a few seconds, while the arc-based formulation only

enables solving instances with up to 15 requests. Furthermore, we conducted a case study



utilizing real-world data from the city of Tel Aviv. The outcomes of this study demonstrate
how the integration of public transit extends the service range of the robots, enabling them to
handle a greater number of service requests while conserving their energy. To conclude, this
study highlights the potential benefits of enhancing AMR-based delivery services by public

transit and provides a practical approach to solving the operational planning problem.
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1. Introduction

Small package delivery services are becoming more and more popular with the rise of on-
demand economy services, in particular, e-commerce and fast-food deliveries (Allen et al.,
2021). To meet the growing need for home delivery within urban areas, new innovative
delivery concepts have been developed, involving cargo bikes, robots, lockers, and more
(Boysen et al., 2021; Chen et al., 2021). Autonomous transportation may have a key role in the
development of such services, and many new technology initiatives that rely on vehicle
autonomy capabilities have emerged in recent years. These initiatives seek to improve urban
logistics by reducing costs and greenhouse gas emissions while improving the quality of service
(Zhang et al., 2021). One prominent concept is based on Autonomous Mobile Robots (AMRS).
In such systems, small wheel-based robots travel on sidewalks at pedestrian speed, providing
point-to-point deliveries (Jennings and Figliozzi, 2019). Typically, the robots are powered by
small batteries. This feature coupled with the relatively slow traveling speed limits the service
range to approximately three kilometres. Notable large-scale implementations of AMRs
include Starship (2022), FedEx Roxo (2022), and Amazon Scout (2022).

The development of AMRs and their deployment has seen a rapid growth in the last couple
of years, according to Fortune Business Insights, the global delivery robots market size is
projected to grow from 306.3 million dollars in 2023 to 2,143.1 million dollars by 2030.
Growing demand for contactless services, labor shortage, and increased e-commerce activity
boost the growth of the delivery robots market globally. Alongside, AMR services are
constantly evolving, introducing new operational problems to the research community, which
have already highlighted the potential of AMRs in various areas. In the AMR service at the
focus of this study, a set of delivery requests is given, where each request is characterized by a
pair of pick-up and delivery locations as well as time windows during which service can begin
in these locations. A fleet of robots is distributed among several depots in the service area. To
extend the reach of the service, the robots are allowed to perform parts of their journey on
board public transit vehicles. Specifically, the robots are loaded in a way that does not decrease
passenger capacity and do not impact passenger service times at the public transit stations.
AMR boarding and disembarking are performed using a designated ramp. A set of fixed public
transit lines that operate in the service area are given. Each fixed line is characterized by a
sequence of stations, the traveling times between them, and the frequency of the service. When
arobot is assigned to a task, it needs to travel from its origin depot to a pickup point, then travel

to the associated delivery point, and finally return to one of the depots for recharging. Each leg



of this journey can be performed directly by the robot (using battery power) or be performed
partially on board a public transit vehicle, which travels at a higher speed and does not require
battery discharging.

Enhancing AMR delivery services by public transit comprises multiple opportunities. First,
the service range can be extended, allowing the robots to serve requests that were infeasible to
serve without the public transit, and at the same time, shortening the service times in some
cases. Second, reducing the overall energy consumption due to the use of transit transportation
for portions of the journeys. Several research studies have already explored related aspects,
although with differences from the system examined in this study.

We consider the static version of the operational problem, i.e., the case where information
regarding the requests is known long enough in advance for operational decision-making. In
our setting, all given requests must be served by the AMRs or by an alternative service
(outsourcing) which is represented by a penalty at a greater cost. For each request, the problem
is to decide upon the means it will be served. Specifically, for requests served by the AMRs,
we need to decide which robot will be assigned to each request, the robots’ routes, and the
depots to which they will return. This needs to be determined while respecting the maximal
number of robots that can be carried simultaneously by a public transit service and the
capacities of the robot depots. The goal of the decision problem is to minimize the total
operational cost which is composed of the AMR’s operational costs and costs associated with
the alternative service. This set of attributes can be described by a graph with four types of
nodes — depot, pickup, delivery, and transportation nodes, and with two types of arcs — electric
arcs representing robot movements using battery power and public transit arcs representing
movements on board the public transit lines.

The operational planning problem in AMR based services represents a special case of the
well-known Pick-up and Delivery Problem (PDP), which concerns the efficient planning of the
transport of objects between given origins and destinations (Berbeglia et al. 2007). In
particular, as the robots’ carrying capacity is small, in many cases they are limited to serve one
delivery at a time, this restriction is also imposed to ensure the security of the deliveries. That
is, the operational problem under consideration is a generalization of the Full Truck Load PDP
(Gendreau et al., 2015). In addition, while in the classic PDP, transportation is provided by a
single mode of transportation, here different parts of the journey may be performed by different
modes, namely, robots or public transit.

In conclusion, the potential of enhancing AMR services with public transit is an approach

that is only beginning to be explored by the research community. The AMR operational
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problem presented in this study differs from previous studies by considering together the
following characteristics: (1) fixed AMR capacity on the public transit vehicles; (2)
representation of the AMR battery capacity and discharging rate; (3) AMR depot capacities;
and (4) AMR’s may return to any available depot. By formulating this operational problem and
proposing an efficient solution method, we wish to close this gap in the literature.

The contribution of this thesis is as follows. First, we define the operational problem of a
public transit enhanced AMR delivery service. Second, we present two MILP formulations of
the problem: arc-based and path-based. Third, we devise a column-generation approach
tailored to the characteristics of the problem. Lastly, we perform an extensive numerical
experiment using synthetic problem instances as well as problem instances derived from a case
study in Tel Aviv.

The remainder of this thesis is organized as follows: in section 2 we provide a literature
review. In Section 3 we formally define the problem using the arc-based formulation and
present the path-based formulation which is the basis for the column generation approach. In
Section 4, we present the column generation framework. In particular, we define the sub-
problem of finding new columns with negative reduced costs and formulate it as four-step
dynamic program. In Section 5, we present the numerical experiment we have conducted to
test the proposed approach. Finally, in Section 6, we provide our conclusions and suggest

directions for further research.



2. Literature Review

This study introduces a column generation approach designed for addressing the operational
challenges inherent in a public transit-enhanced Autonomous Mobile Robot (AMR) delivery
service an application-specific variant of the Pickup and Delivery Problem (PDP).
Subsequently, the following section is dedicated to an in-depth examination of three critical
topics. Section 2.1 provides a comprehensive exploration of the existing PDP literature. In
Section 2.2, we conduct a review of recent literature on AMRs, with a specific focus on similar
applications. Section 2.3 delves into a critical review of column-generation approaches

employed to tackle transportation problems closely related to our study.

2.1. Pickup and Delivery Problems

The literature on Pickup and Delivery problems (PDP) has grown significantly in recent years,
with a range of different problem formulations and solution methods being proposed. In the
general Pickup and Delivery problems (GPDP), a set of routes must be considered in order to
satisfy transportation requests. A fleet of vehicles is available to operate the routes, each vehicle
has a given capacity, a start point, and an end point. Each request specifies the size of the load
to be transported, the location where it is to be picked up (the origins), and the location where
it is to be delivered (the destinations) (Savelsbergh and Sol. 1995).

Parragh et al. (2007) presented a survey of PDPs, describing them as a special class of
GPDPs, with transportation requests, each associated with an origin and a destination, resulting
in paired pickup and delivery points. In contrast, in GPDP a single pickup point can be
connected to multiple delivery points or vice versa. The main context in which PDPs are raised
is ground vehicle routing, but novel approaches have also been proposed for PDPs in maritime
and aerial domains. For example, Christiansen and Nygreen (1998) presented a method for
solving ship routing problems with inventory constraints, while Choudhury et al. (2019)
presented a PDP Multi-Layered system with drones that can either fly or ride on vehicles for
segments of their routes.

PDP can be further classified into static and dynamic problems. A routing problem is said
to be static when all the input data of the problem are known before routes are constructed.
There are three solution methods for the static PDP: exact methods, heuristics, and
metaheuristics. A detailed benchmark of the main solution methods is described in the survey
of Parragh et al. (2007). Brouer et al. (2004) develop a branch and cut and price algorithm that

is capable of solving to optimality problem instances with up to 205 requests.



The dynamic routing problem is one in which some of the input data are revealed or updated
during the period of time in which operations take place. The input data which are revealed
over time in PDPs are generally the user requests (Berbeglia et al., 2010). Several heuristics
and metaheuristic solution methods have been proposed for dynamic PDPs. Surveys on
dynamic routing can be found in Ghiani et al. (2003) and Berbeglia et al. (2010).

The problem of focus in this study can be seen as a variant of the Pickup and Delivery
Problem with Time Windows (PDPTW). In this problem, the set of requests (pickup-delivery
pairs) is subject to time windows, i.e. the vehicle needs to load the parcel from the pickup point
within a given time frame and unload it within another time frame. Baldacci et al. (2011)
presented an exact algorithm for the PDPTW based on a set-partitioning like integer
formulation. They also described a bounding procedure that finds a near-optimal dual solution
of the LP-relaxation of the formulation by combining two dual ascent heuristics and a cut-and-
column generation procedure.

Due to their small capacity, robots often serve one delivery at a time. This case is known
as the one-commodity Full Truck Load PDP (1-FT-PDP). The term Full Truck Load implies
the unit capacity of the vehicle and the unit supply/demand of the requests. Gendreau et al.
(2015) introduce solution approaches that are based on branch-and-cut algorithms.

A combination of the characteristics described above represents the special case of the
PDP that is called Full Truck Load PDP with time windows (FT-PDPTW). Gronalt et al. (2003)
are the first to consider this problem, while focusing on minimizing empty vehicle movements.
They propose different heuristic algorithms for the problem. Caris and Janssens (2009) deal
with the problem of Pre- and end-haulage of intermodal container terminals, the drayage of
containers in the service area of an intermodal terminal is modeled as an FTPDPTW. A two-
phase insertion heuristic is proposed to construct an initial solution. This solution is improved
with a local search heuristic based on three neighborhoods. The context of the study of Janssens
and Braekers (2015) is transporting goods to the customer, which is more similar to our study,

they present an exact solution based on a set partitioning approach.

2.2. Autonomous Mobile Robots

The development of AMRs and their deployment has seen a rapid growth in the last couple of
years. Alongside, AMR services are constantly evolving, introducing new operational
problems to the research community, which have already highlighted the potential of AMRS in
various areas. Boysen et al. (2018) and Ostermeier et al. (2022), study a truck-and-robot

delivery concept in which the AMR’s are loaded on trucks and are deployed at several locations



in the city from which they move to the customers. As compared to the traditional truck based
services, this approach is shown to reduce considerably the delivery costs and the number of
trucks required to perform the deliveries. Alfandari et al. (2022) study an AMR last-mile
delivery service with the goal of minimizing tardiness based on customer delivery deadlines.
They consider three major tardiness indicators, formulate the problem as a Mixed-Integer
Programming (MIP), and apply an efficient branch-and-Benders-cut scheme to handle realistic
instances. They analyze the impact of various factors such as the number of available facilities,
the coverage radius of autonomous robots, and their speed on the quality of service and
environmental costs. Liu et al. (2021) examined how online retailers could use AMR sharing
capability in order to cope with demand surges during shopping festivals. The study examined
an online retailer's AMR capacity sharing strategies with a logistics firm under a demand surge.
Sharing models were developed under unilateral and bidirectional option contracts, and the
optimal ex-ante and ex-post sharing strategies, as well as the corresponding initial, option, and
total sharing quantities, were derived.

Additionally, alongside the ground-based AMRs, autonomous drones have gained
prominence in the realm of autonomous transportation. Benarbia and Kyamakya (2021) survey
a set of relevant research issues and highlight representative solutions and concepts that have
been proposed in the design and modeling of the logistics of drone delivery systems. Prominent
examples incude: VRP with drones (Ham, 2018; Wang and Sheu, 2019; Jeon et al., 2021),
drone/task assignment (Grippa et al. 2018) and flight range issue (Huang et al. 2021).

In a closely related work to ours, Mourad et al. (2021) studied a combined service in which
autonomous delivery services are integrated into a passenger transportation system. The
operational problem studied in this work differs in three main aspects: (1) the capacity of the
public transit vehicles is assumed to be constant, i.e., uncertainty in capacity is not considered.
(2) vehicle range is represented by the energy consumed rather than by the total distance
traveled, as the robot path may include non-battery consuming public transit arcs. (3) the
capacity of the robot recharging depots is explicitly considered.

Recently, De Maio et al. (2023) examined a last-mile delivery service employing ground
drones that can use public transit for parts of their routes. They developed a tailored destroy-
and-repair mechanism and embedded it into a neighbourhood search algorithm. Results of a
case study in Rome, lItaly, shows a reduction of up to 7.5% of the costs as compared to
traditional services. The problem considered in De Maio et al. (2023) differs from our problem
in the following aspects. First, each request is represented by a single location, i.e., they study

a vehicle routing problem, rather than a PDP. Second, time windows for the service requests
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are not enforced. Lastly, the ground drones are constrained to returning solely to the originating
depot point. In contrast, we study a PDP with time windows in which robots are allowed to

return to any non-fully occupied depot.

2.3. Column Generation

Column Generation was initially introduced by Dantzig and Wolfe (1960) as a decomposition
method for solving large linear programming models, typically having an exponential number
of decision variables. The main idea behind this approach is to start with a small subset of the
variables and to incrementally add only variables that may improve the tentative solution. The
framework consists of a variable restricted version of the original problem (master problem)
and a pricing problem used to identify new variables that should be added to the restricted set
in order to improve the solution (pricing subproblem). This framework iteratively solves the
two problems, until no new columns can be found, that is, the algorithm converges to the
optimal solution (Libbecke and Desrosiers, 2005; Desaulniers et al., 2006).

Column Generation has been widely applied to solve problems arising in the fields of
logistics and scheduling, in particular, Vehicle Routing Problems (VRP). Recent examples
include: multi-trip VRP (Paradiso et al., 2020), VRP with synchronization constraints (Fink et
al., 2019), VRP with drones (Wang and Sheu, 2019; Xia et al., 2023), electric VRP (Zang et
al., 2022) and the selective Dial-a-Ride Problem (Rist and Forbes, 2022).

The column generation procedure can be computationally expensive, especially when
solving large-scale problems. To overcome this limitation, several studies have proposed the
use of parallel computing to speed up the column generation procedure. Yu et al. (2022)
propose two algorithms to solve the “pricing subproblem” which corresponds to the resource-
constrained shortest path problem and used parallel computing to improve the column
generation for solving the linear programming relaxations and can obtain heuristic integer
solutions with small optimality gaps.

In conclusion, Column Generation is a powerful optimization technique that is particularly
useful in solving large-scale transportation problems. Its ability to handle a large number of
variables and constraints, as well as its ability to handle multiple objectives make it a valuable
tool in the field of transportation. There are several ways to implement column generation in
transportation problems, such as Dantzig-Wolfe decomposition and Benders decomposition,

and the choice of the method depends on the specific problem and the available data.



3. Problem Definition

In this section, we present two Mixed Integer Linear Programming (MILP) formulations for
the operational problem, arc-based and path-based. The former serves as means to define in
detail the problem, it represents explicitly each potential leg of the robots and decides upon the
legs to be travelled. The latter considers complete feasible paths to select the best path (and

robot) for each request.

3.1. The arc-based model

The input of the model consists of information regarding the service requests, the fleet of
robots, the transportation network, and the public transit lines. In particular, each service
request is characterized by a pickup location, a drop-off location, corresponding time windows,
and a penalty cost. The robots are characterized by their battery range and initial locations. The
transportation network consists of arcs connecting all system nodes (pickups and drop-offs,
public transit stations and depots). Each arc is associated with a travel time (robot or public
transit), battery consumption and traveling cost. In addition, each depot is characterized by a
capacity, representing the maximum number of robots that can be parked at the end of the
planning period. Replications of the public transit lines, namely, service lines, are represented
as ordered sequences of transfer nodes and the periods of time during which they are served.
Furthermore, the maximum number of robots that can simultaneously board a public transit
vehicle is given.

The objective of the model is to minimize operational costs, combining robot movement
related costs and the penalty costs. Due to the limited capacity of the robots, a noteworthy
assumption we make in this model is that during the planning period, each robot can serve at
most one request. Additional sets of constraints are used to enforce: routing and timing

feasibility, battery range, public transit service capacity, and the depot capacities.

Indices:

i,j,k node

v robot

w service line
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where:

b, iER b;, i €R
ol ={pu, iET pr={p, i€T

hY, i€ec hY, i€ecC
e; = b; =1 VieR (14)
bnii 2 by +yi+ g Vi € P (15)
xl?’j € {0,1} (i,j) EN,VveEV (16)
u; €{0,1} VieP (17)
b; >0 VieR (18)
hY > 0,h7 =0 ViECVVEYV (19)

The objective function (1) minimizes the overall cost, which consists of the travel costs of
the robots and the penalty costs of unserved requests. Constraints (2) stipulate that each robot
serves up to one request. Constraints (3) ensure that every request is served by a robot or
outsourced. Constraints (4) ensure that the pickup and drop-off of a request are served by the
same robot. Constraints (5) are flow conservation constraints, applied on all nodes except the
depot nodes. Constraints (6) ensure that every robot that departs from its origin location returns
to a depot node. Constraints (7) asserts that a robot can depart from their origin location at
most once. Constraints (8)-(9) eliminate arcs that cannot be traveled directly by the robots (on
their own or onboard a service line). Constraints (10)-(11) enforce the capacity limits of the
transfer nodes and the depot nodes, respectively. Constraints (12) ensure that the total robot
battery discharge does not exceed the battery capacity. Constraints (13) ensure that the time
between the service start times at two nodes that are visited consecutively by the same robot,
respect the service time and the direct travel time. Constraints (14) ensure the time windows of
the request’s nodes are respected. Constraints (15) ensure the pickup node is visited before the

drop-off node. Finally, variable integrality and non-negativity are set in Constraints (16) -(19).

3.2. The path-based model

In what follows, we present the MILP formulation of the path-based model. The model
explicitly represents the travel costs of the robots, the penalty costs for unserved requests as
well as the capacity constraints of the transfer and depot nodes. A set of feasible paths for each
robot-request pair is calculated in a preprocessing phase. The feasibility of a path is verified
during this preprocessing phase, validating the departure time of the transfer nodes, time
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windows of the request nodes and battery capacity. The following indices and parameters are

used in the path-based model:

Indices:

D Path

v Robot

r Request

c Depot node

t Transfer node
Parameters:

K Capacity of each depot node
Q Capacity of each transfer node

Up Cost of pathp € 4

S, The initial number of robots in depot node c € C
A Set of all paths

A, Set of all paths for request r € R

4,  Setofall paths for robot v e V

Vi Set of all paths that end in depot node c € C

4.,  Setof all paths that start in depot node ¢’ € C

A Set of all paths that use transfer node t € T

Decision Variables:

w,  lifpath p € Ais in use, O otherwise
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Minimize Z Wp * Uy, (20)

pEA
Subject to
ZWp:l VreR (21)
pPEAy
pr=1 VvEV (22)
pEdy
ZWpSQ VteT (23)
PEA:
Dowp= ) wp <K =S yeee (24)
pPEA, PEA
w, € {0,1} Vp€EA (25)

To simplify the formulation, we introduce two types of special paths that are included in the
set 4

1. "Penalty paths" represent the cases where requests are not served by a robot, but instead

are outsourced at a penalty cost.

2. "Dummy paths" represent the cases where robots are not in use and have zero costs.

The objective function (20) aims to minimize the overall cost, which consists of the travel
costs for the robots and the penalty costs for unserved requests. Constraints (21) ensure that
each request is assigned to a single path, either an actual path or an penalty path. Constraints
(22) ensure that each robot is assigned to a single path, either an actual path or a dummy path.
Constraints (23) ensure that the capacity of the transfer nodes is not exceeded. Constraints (24)
ensure that the capacity of the depot nodes is not exceeded, by requiring that the number of
paths ending at a depot minus the number of paths starting at a depot must be less than or equal
to the depot capacity minus the number of robots initially assigned to the depot. Constraint (25)
defines the decision variables as binary. In the column generation procedure, we use the LP
relaxation of the problem, that is, constraints (25) are relaxed.

While the path-based formulation has a more compact structure, the number of paths that
may be considered grows exponentially with the number of requests, thus this formulation can
be solved directly by fully enumerating all potential paths only for very small instances of the
problem. To handle medium to large instances we develop a column generation approach that

will be discussed in following section.
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4. Solution Approach

In the following subsections we present the main components of the column generation
framework we have devised in order to solve the operational problem in the public transit
enhanced AMR service. In Section 3.1, we formulate the dual of the linear relaxation of the
path-based model. The pricing problem is to identify primal non-basic columns with negative
reduced costs. This is equivalent to identifying constraints that are violated by the solution of
the restricted path-model. As in most column generation approaches for VRP’s this is
essentially a Resource Constrained Shortest Path (RCSP) problem (Irnich and Desaulniers,
2015; Pugliese and Guerriero, 2013). In Section 3.2, we develop a four-stage dynamic

programming algorithm to solve it.

An overview of the framework is presented in Figure 1. We initialize the restricted set of
paths and solve the path-based model. Then, in order to identify new columns, we solve for
each robot-request pair RCSP problem. Notably, the sub-problems of different robot-request
pairs are independent and can be solved simultaneously. If new columns are identified, we add
them to the restricted set and re-solve the master problem. This process continues iteratively
until no new improving paths can be found. In cases where the resulting solution is non-
integral, a feasible integral solution is obtained by directly solving problem (20)-(25) with the

path set generated by applying the column generation.

Inmitial set of paths

Solve restricted path-based
model and get duals

!

]

Add new paths
to the paths set

Solve RCSP
subproblem for
robot-request
pair 1

Solve RCSP
subproblem for
robot-request
pair 2

Solve RCSP
subproblem for
robot-request
pair [V| X |R|

Aﬂﬁve

reduced
cost paths?

NO

Find LP solution

Figure 1: Flow chart of the column generation procedure




4.1. The path-based dual model
The dual model of the restricted LP relaxation version of the path-based problem is defined as

follows:
Parameters:

r(p) The request associated with pathp € 4

v(p) The robot associated with path p € 4

c(p) The start depo associated with path p € 4

c'(p) The end depo associated with path p € 4

0, The set of transfer nodes associated with path p € 4
Decision Variables:

Xy The dual variables associated with Constraints (21)

Vo The dual variables associated with Constraints (22)

Z; The dual variables associated with Constraints (23)

Uc The dual variables associated with Constraints (24)

MaximizerT+zyv—Q*ZZt—Z(K — Sc) * Uc (26)

TER VEV teT cec
Subject to
Xr(p) T Yv(p) — Z Ze T Uep) — U/ (p) S My VpeA (27)
t€b,
x, free VreR (28)
Yy, free VvEeV (29)
zt<0 VteT (30)
#c<0 VcecC (31)

The decisions variables of the dual problem (26)-(31) represent the request, robot, transfer
nodes and the depot nodes of a considered path in the restricted primal problem. The variable
x, (28) represents Constraints (21) in the primal problem, which ensure that each service

request is served. The variable y, represents Constraints (22) in the primal problem, which
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ensure that each robot is used on only a single path, either an actual path or a dummy path. The
variable z; represent Constraints (23) in the primal problem that ensure that the capacity of the
transfer nodes is not exceeded. If z; has a negative value, it indicates that transfer node t has
reached its capacity limit. Similarly, the variable u, represents Constraints (24) that ensure the
capacity of the depot nodes is respected. A negative value of u, indicates that the amount of
robots at depot c at the end of the planning horizon equals to the capacity of the depot. The
values of z; and u, reflect the penalty incurred when resources are consumed. Considering a
given robot-request pair (v,r), we seek to identify a path p that violates constraint (27), that

is, a path that satisfies the following:

Up — (fr(p) + yv(p) - Z Zp + ﬁC(p) - aC'(P)) <0
t€o,

(32)

Noting that the values of the variables y,, x, and u, are fixed for all paths of the robot-
request pair (v, r) the objective of the RCSP sub-problem is to find a path p that minimizes the

following expression:

tp — (= Z Zy — U/ ()
teep

4.2. The shortest path sub-problem with resource constraints

We formulate the RCSP sub-problem as a four-step dynamic program to account for limitations
related to battery usage and the time windows of request nodes. Recall that we assume that a
robot can serve at most one request during the planning horizon. As a result, the problem can
be decomposed to four main decision steps, as illustrated in Figure 2: the path from the initial
depot to the pickup point, the path from the pickup point to the drop-off point, the path from
the drop-off point to the depot, and the depot where the robot should return for recharging.
Note that the first decision steps reduce to deciding if public transit is to be used, and if so, to
selecting the start and end transfer nodes. We denote the set of transfer node pairs that may be
selected by B, and a pair (i,j) € B is denoted as arc A, for shortness of the presentation. The
fourth decision is restricted to selecting a return depot from the set of depots ¢. A state of the
robot is denoted by the quartet (S, T, B, N), representing the decision step S, the current time

T, the current battery state B, and the current node N. Specifically, the decision step S takes
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one of the following values: 1 — at the origin depot, 2 — at pick-up location, 3 — at drop-off

location, 4 — selecting the return depot.

Step 4

- Depot

Figure 2: The four-step path diagram

Given that the robot is in state (S,T,B,N), the function F(S,T,B,N) represents the
minimal path cost from the node of step S to a return depot. This function can be defined
recursively using the following Bellman equation:

min[6(S,A) + F(S+ 1, a(S,A,T),e(S,A,B),p(S,4))], S €{1,2,3}

F(S,T,B,N) = AE.B
minfuye +FS+1 T+ tne B = e o)l S € {4}

Where 6 represent the cost component, ¢ is a time function, € is the energy function, and p is
the node function. The travel cost, travel time, and battery consumed while the robot travels
from node N to return depot c, are denoted by py ¢, Ty ¢, By ¢, respectively.

An optimal solution of the sub-problem is obtained by calculating the cost F(1, 0, J, 0,),
which represents the shortest path of the robot departing from origin depot o,, with a battery
state J at the beginning of the planning period. An end condition represents the cost at the return

depot:
F(5T,B,N)=0 VT,VB > 0,VN

In addition, the following boundary conditions are applied to prevent exploration of infeasible

solutions:
F(S,T,B,N) = VS €{1,2,3,4},VB <0,VT,VN
To ensure that the battery of the robot is not exceeded.
F(S,T,B,N) = VS €{2,3},VB,VT > Iy, VN
To ensure that the time windows of request nodes at steps 2 and 3 are respected.

During each step in the program, there are two options available to the robot to move to the
next step node. The first option is a direct movement from node S to node S + 1, which involves

the robot traveling one leg using its battery power without the use of public transit. The second
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option involves the use of public transit for part of the travel. In this case, the travel consists of
three legs: 1) the robot uses its battery power to travel from node S to the boarding transfer
node, 2) a public transport leg that connects two transfer nodes of the same service line, and 3)
the robot uses its battery power to travel from the disembarking transfer node to node S + 1. It
IS important to note that in each step, we assume that only one transit line is used.

Each step of the algorithm requires calculating the cost accumulated, the time elapsed and
the battery used. All of these can be presented as linear functions of the problem input and the
dual variable values associated with the transfer nodes and the return depots. Four nodes are
considered: i,j,k and [, with i being the node at step S, (j, k) representing a pair of public
transit nodes within the set B, and [ being the node at step S + 1. As illustrated in Figure 3, the
legi — [ represents adirect robot movement, whereas the legi — j = k — [ represents the use
of public transit for part of the journey between i and L. In what follows, let C, P, and D denote
the indices of the initial depot node, the pickup node, and the drop-off node, respectively. We

next define the functions used in the Bellman equation.

Direct movement

( )(j,k)eB( )

Figure 3: Movement options in the DP algorithm

The cost function 8(S, A):

The function determines the costs of traveling from the node of step S using public transit arc
A to the node of step S + 1. We differentiate between the case of a direct robot movement and
movement using public transit. The costs for each step of the dynamic program are presented
in Table 1.

Table 1: The cost function values per state

S Direct movement A = 0 Movement using public transit 4 = (j, k)
1 lep + T (Mej + tje + pep) — Z Z,
te( k)
2 UpDp (/“lP]' +p + /“tkD) - Z Z;
te( k)
3 0 (mpj + mpe) — Z Zy
te(j k)
4 Upr—U; i —Uy
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Step 1 involves selecting the path from the initial depot to the pickup point. If the robot moves
directly from the depot node C to the pickup node P, then the cost will be the actual travel cost
which is represented by u.p, plus the dual price of depot node C, u.. However, if the robot
uses a public transit arc (j, k), then the actual travel cost will be the sum of three legs: from C
to j, from j to k and from k to P. In this case, the cost will also include the dual price of depot
node C, uc, and the transfer nodes included in arc (j, k), which is — Xt k) Z¢-

In Step 2, the decision is made to select the path from the pickup point to the drop-off point.
If the robot moves directly from the pickup node P to the drop-off node D, then the cost will
be the actual travel cost represented by upp. There is no dual price associated with these nodes.
However, if the robot uses a public transit arc (j, k), then the actual travel cost will be the sum
of the three legs plus the dual price of the transfer nodes included in arc (j, k).

Step 3 involves selecting the public transit arc to use before returning to the end depot. The
robot has the option of not using public transit, in which case the cost is zero. However, if the
robot uses public transit, the cost will include the actual travel cost from the drop-off node D
to the transfer node j, plus the public transit cost of arc (j, k) represented by pp; + ujy.
Additionally, the cost will include the dual price of the transfer nodes included in the path.

Finally, in Step 4, the decision is made to select the depot node to which the robot should
return for recharging. The cost of this route will be the travel cost from the current node to node
[, being the end depot the robot returns to, minus the dual price of depot node I, which is —u;.
In case public transit is not used in Step 3, the current node is drop-off node D, and the travel

cost is up;. Otherwise, the current node is transfer node k and the travel cost is py;.

The time function a(S, A, T):

The time function value for the four steps, considering direct movement or movements using
public transit, are presented in Table 2. The function determines the time the robot arrives at
the node of step S + 1 given that it departs at time T from the node of step S and uses public
transit arc A. o represents both options of movements and consider the departure time of the

service line from transfer node j, p;. In case a feasible path cannot be found within the given

departure time, the function returns an infinite value.
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Table 2: The time function values per state

S Direct movement A = 0 Movement using public transit 4 = (j, k)
1 max(T + 6¢cp,ep) + gp {::ax(pj Ot S o)t gP: ; I gz; i Zj
2 max(T + 6pp,ep) + gp {ZaX(pj + 0t o) + gD', ;igg fgj
3 T {pj+5jk+gk, T+ 6p; < p;
e , T+ 6p; > p;
4 T + pp, T + uyy

Step 1 involves determining the updated time for a robot to pick up a parcel. This is done by
comparing the time it takes to travel to the pickup point with the earliest time window specified
for that pickup. The updated time is set to the later of these two times, as the robot must wait
for the beginning of the time window before attempting to pick up the parcel. If the robot moves
directly from one point to another, the updated time is the current time T plus the travel time
from node C to node P, which is represented as &.p. However, if public transit is used, the
updated travel time is calculated by adding the departure time of transfer node j with the travel
time from node j to node k, and from node k to pickup node P. In both cases, the service time
at node [ is added to the updated time. In case of the robot arrive to transfer node J after the
departure time, the function return oo. Step 2 follows a similar logic, but with node [ being the
drop-off node D. In step 3, if public transit is not used, the time remains unchanged. If public
transit is used, the updated time is the departure time of transfer node j plus the travel time
from node j to node k and the service time at node k. The departure time of node j must be
respected in this step as well. Finally, in Step 4, the updated time is calculated by adding the

travel time from the current node to node [, to the current time T.
The energy function €(S, 4, B):

The function is designed to determine the battery state of a robot that departs from the node of
step S with battery state B and uses public transit arc A. The function considers both options of
movements and reduces the battery that is consumed in the current state from B. This is
achieved by reducing the discharge amount of non-public transit arcs from B. The energy
function value for the four steps, considering direct movement or movements using public

transit, are presented in Table 3.
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Table 3: The energy function values per state

S Direct movement A = 0 Movement using public transit 4 = (j, k)
1 B — pcp B = (pcj + prp)
2 B — ppp B — (ppj + Prp)
3 B B— pj
4 B — pp B = pr

The node function p(S, A4):

The function is designed to return the node of step S + 1, considering the use of public transit
arc A at step S. The node function value for the four steps, considering direct movement or

movements using public transit, are presented in Table 4.

Table 4: The node function values per state

S Direct movement A = 0 Movement using public transit 4 = (j, k)
1 P P
2 D D
3 D k
4 l l

If the current step is 1, the node at step 2 is the pickup node P. If the current step is 2, the node
at step 3 is the drop-off node D. In step 3, the node at step 4 depends on the use of public transit.
If public transit is not in use, the node at step 4 is the drop-off node D, as no movement has
occurred. However, if public transit is in use, the node at step 4 is the transfer node where the
robot exited the public transit, which is represented by node k of the selected arc (j, k) € B.,
the node at the end of the program is [, the return depot node of the robot.

As illustrated in Figure 1, each column generation iteration requires solving a total of |V| x
|R| sub-problems. However, it's important to note that when two or more robots commence
their journeys from the same initial depot, the resource-constrained shortest path problem is
fundamentally identical for all these robots. To enhance the efficiency of the column generation
procedure, we have applied symmetry reduction considerations to reduce the number of
resource-constrained shortest path problems to be solved to |C| X |R|. The outcomes of this

optimization process are elaborated upon in Section 4.2.
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5. Numerical Experiments

In this section, we discuss in detail the design of our numerical experiment, as well as the
obtained results. The primary objective of our study was to examine the performance of our
solution approach and showcase the impact of enhancing AMR services with public transit.
For this purpose, we have generated both synthetic problem instances as well as case study
instances based on data from Tel Aviv. In the following sections, we will elaborate on the
specifics of the data sets, the parameters employed in our model, and the evaluation metrics

utilized to assess the effectiveness of the proposed method.

5.1. Synthetic problem instances
We have created a random instance generator, that in addition to the model parameters

described in Section 2, uses the following auxiliary parameters:

e NS: Sets the dimensions of the network area.

e H: the planning horizon.

e TW: Defines the time window size of the request nodes.
The network area is defined as a square with a range of [0, NS], and all nodes' locations are
located within this area. The sets of robots, depots, requests, service lines, and transfers, are
generated as follows. Each robot's depot origin location is randomly sampled from the depot

nodes set with respect to the depot capacity parameter. Transfer nodes are distributed among

the service lines such that each service line has a size of [ |], except for one service line that

171
W
has a size of [%] % 7. Depot and request nodes are randomly located within the network.

For each service line, the transfer node locations are generated as follows: the first and last
node are randomized, ensuring that there is a minimum distance of 0.6 - NS between them. The
remaining transfer nodes associated with the service line are evenly split on the line between
these two nodes. The departure time of the first transfer node is randomized, and the departure
times of the rest of the transfer nodes are calculated based on their service time and travel time
from the previous transfer node. If the departure time of the last node in the line exceeds the
planning horizon, the entire service line schedule is shifted back to ensure it is feasible.

We generate the request time windows using the following process. Let T be the center of

the time window of pick-up node i, we randomly draw it from the uniform distribution

~U[TW, %], and set e, =t —TW, [, = 7+ TW. Similarly, let 7’ be the center of the time
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window of drop-off node n + i, we randomly draw it from the following uniform distribution
T'~[t+9;+6;n+1,09H] and set ey =T = TW, Ly =T + TW.

The travel times of the robots between any pair of nodes (6;;) is set to the Euclidean
distance between the two nodes. For simplicity, we set the discharge rate to be one. That is, for
every time unit a robot travels, it discharges one unit of battery. For public transit arcs we
further multiply the Euclidian distance by a fixed factor n to represent a different average speed
of a public transit vehicles. The cost is calculated as the product of the travel time and a cost
factor €, which is a parameter input of the instance. In the case of public transit arcs, the cost
is multiplied by a public transit cost factor s, which is a number between 0 and 1, reflecting

the lower cost of public transit compared to regular robot movement:

o 61]* g, (l,])E(N\T)
Hij 8ijx ex Y, G,)EeT
The parameter values we have used to in order to generate the synthetic problem instances are

presented in Table 5.

Table 5: Random instances parameters and values

Parameter  Description Range of values

NS the size of the network 15-400

H the planning horizon of the instance 1500-40000

n number of service request 2-150

1% set of robots 2-150

C set depot nodes 1-70

w set of public transit service lines 1-12

T set of transfer nodes 3-34

Ji robots maximum travel time 10-1000

K capacitiy on depot node. K > [% 2-11

Ji service time for all node i € v 2

™ half length of the time window 200

F; penalty cost for unsreved request 1-10000
capacitiy on transfer node 0-10

€ cost factor 5

1 public transit cost factor 0-1

n public transit travel time factor 1
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5.2. Tel Aviv problem instances

To evaluate the efficiency of our proposed method in a real-world setting, we generated a new
set of problem instances using the road, sidewalks, and public transit networks of Tel Aviv.
Our study focused on a specific sub region of the city, measuring four square kilometres in
size. The sub region is composed of ten neighbourhoods defined by Tel Aviv - Yafo
Municipality. The city’s GIS Portal (gisn.tel-aviv.gov.il) provided data for neighbourhood
boundaries and bus stops. We calculated the distance and travel time over each network arc
using OpenRouteService (https://github.com/GlScience/openrouteservice). The arc costs and

battery discharge were calculated using the same approach as for the synthetic problem
instances.

Requests pickup and drop-off locations were randomly selected from passenger trips
completed by Tel Aviv’s ride-pooling service (Bubble) between April 15, 2019, and September
30, 2020. We collected data on four public transit lines, encompassing a total of 47 stations,
and 300 service requests. We randomly created the time window centers of the service request
nodes to make them coincide with public transit schedules. The time window widths of the
request nodes were set to 2400 seconds, which is typical for food and office equipment
deliveries. We also picked locations randomly for 30 depot stations, with some coinciding with
public transit stations. The initial distribution of the robots to depots was selected randomly. A
map of the studied area is presented in Figure 4. From these data sets, we created five instances,
each varying in the number of robots, requests, public transit lines, and depot stations. The
name of each instance follows the following convention: <number of robots>_<number of
requests>_<number of depots_number of public transit lines> <number of public transit
stations>, to enhance clarity in the subsequent tables and figures, we abbreviate the convention

to tlv_<number of requests>
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Figure 4: Map of the Tel Aviv sub region by OpenStreetMap

Table 6 provides the parameters of each instance, which were chosen to ensure that each
instance was both realistic and feasible. Some parameters were fixed across instances, while
others varied. The number of requests varied from 100 to 300 in increments of 50, to test the
column generation approach across a range of problem instance sizes. The robot's supply size
was kept identical to the number of requests so as to assess the number of requests that could

be served by robots. The number of depots increased with the number of robots, and the depot
capacity was set to [%] + 1 to allow some flexibility in robot routes while keeping the depot

capacities limited. The planning horizon was set as the latest departure time of the public transit

plus 1500 seconds to ensure that all public transit stations were feasible for all requests. The
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penalty cost was set high at 40000 to encourage using robots over outsourcing, except when
no other option was available. The battery capacity was set to 3600, representing one hour of
robot operation. The capacity in transfer nodes was set to 8 to ensure that public transit could
be used with realistic resources. The public transit cost factor was set to zero to test the

effectiveness of public transit usage in an extreme case.

Table 6: Tel Aviv case study instances

Parameter Instance
tlv_100 tlv_150 tlv_200 tlv_250 tlv_300

NS NA NA NA NA NA
H 6660 6660 6660 6660 6660
n 100 150 200 250 300
% 100 150 200 250 300
¢ 20 25 30 30 30
W 3 4 4 4 4
T 33 47 47 47 47
)i 3600 3600 3600 3600 3600
K 6 7 8 10 11
g; 2 2 2 2 2
™ 1200 1200 1200 1200 1200
F, 40000 40000 40000 40000 40000
0 8 8 8 8 8
e 5 5 5 5 5
v 0 0 0 0 0

The complete set of instances used in this numerical experiment and the results is available
online at: https://github.com/Yishay-S/AMRSPYy.

5.3. Experimental setup

The experiments were carried out on a Windows server with a 64-bit operating system, two
Intel Xeon Gold 6230 CPU@2.10GHz, each with 20 physical cores (40 logical), and 128 GB
of usable RAM. We utilized IBM CPLEX 12.10.0.0 solver for the linear and mixed integer
programming tasks, while the random instances creation and column generation procedure,
including the DP algorithm for the sub-problem, were implemented using Python 3.7.4.
Different parallel computing settings were used in the synthetic and Tel Aviv problem instances
for the column generation method in sub-problem solving. The synthetic problem instances

varied more in size, including small instances, so we used 8 CPU cores, which was beneficial
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for both small and large numbers of cores. For the Tel Aviv case study, which involved
instances of 100 requests and above, we used all available resources and employed 80 CPU

cores for parallel computing.

5.4. Results

We tested our approach on seven-hundred synthetic problem instances we have randomly
generated with varying numbers of requests, robots, and public transit nodes. Figure 5
illustrates the average solving time of the arc-based model and column generation approach for
problem instances consisting of two to 24 requests. Specifically, the arc-based model was
solved using CPLEX with a time limit of one hour. It exceeded the time limit for instances with
more than 12 requests. The column generation approach produced optimal solutions for these

instances in just a few seconds.

mo0l T Arc-based

Path-based column generation
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Figure 5: Arc based model vs. column generation approach

In the implementation of the column generation framework, we have applied symmetry
reduction considerations to reduce the number of resource-constrained shortest path problems
to be solved. In addition, we applied parallel computing and evaluated the impact of the number
of sub-problems solved simultaneously on the overall running time of the column generation
framework. Figure 6 displays the average solving time of the column generation approach for
varying instance sizes, with up to 150 requests. We compare three versions of the algorithm,
the baseline straightforward implementation of the model, a version that applies symmetry
reduction and a third version that applies symmetry reduction and utilizes 8 CPU’s to

simultaneously solve the sub-problems. As can be observed, reducing symmetry, and utilizing
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parallel computing have significantly improved the performance of the column generation

approach.
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Figure 6: Performance of the column generation versions

Recall that the column generation framework solves the linear relaxation of the path based
model. For the synthetic problem instances, less than 2% of the obtained solutions were non-
integral. For these specific instances, we have generated a feasible integral solution by directly
solving problem (20)-(25) with the path set obtained by applying the column generation. An
average optimality gap of 0.13% was obtained for these instances. This demonstrates that for
any practical purpose the proposed column generation approach can be used to obtain high
quality solutions in reasonable computing time. Lastly, we have measured the extent of the
public transit usage in the obtained solutions. In the tested instances, we observed cases in
which none of the requests were served using public transit and up to cases in which all of the
requests were served using public transit, for parts of the robot paths. This depends on the
structure of the network, the available public transit lines, and the relative cost of using these
lines. As can be expected, we observed that as the cost of public transit decreases, its usage
increases.

For the Tel Aviv problem instances, we ran the model twice for each instance, once
enabling the option of using public transit and once when this option is disabled. We analyzed
various metrics, including the overall cost of the service, the number of requests that could not
be served by robots and were thus outsourced, and the average energy consumption of the
served requests. The results of each run of the algorithm are displayed in Table 7.
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Table 7: Tel Aviv case study results

% used Average AMR Solving

Public % served by
Instance ) Total cost public battery time
Transit AMRs
transit  consumption (seconds)
i 100 No 1,400,630  90.00% 0% 2,224 300.54
- Yes 1,148,054  95.00% 48% 1,996 648.71
No 2,110,788  90.00% 0% 2,238 547.79
thv_150 Yes 1,707,525  97.33% 47% 2,120 1,307.71
v 200 No 2,928,079  89.00% 0% 2,301 456.64
- Yes 2,449,669  95.00% 40% 2,158 1,758.08
iy 250 No 3,551,012  88.80% 0% 2,190 443.80
- Yes 2,926,509  96.40% 35% 2,130 2,880.45
- No 4,147,365 89.67% 0% 2,162 827.98
- Yes 3,457,048  97.33% 29% 2,149 4,146.44

In instance tlv_200, the column generation approach provides a suboptimal solution with a
relative gap of 0.001%, which is negligible in terms of the quality of the service and the overall
cost, for the other four instances, the model provides an optimal solution.

The percentage of service requests that were served using public transit for parts of the
journey provides an insight into the possibility of incorporating public transit into AMR's
delivery services. On average, 39.8% of requests served by AMRs involved the utilization of
public transit, indicating the practicality and viability of integrating public transit within the
AMR service. When the use of public transit is enabled, the average humber of outsourced
requests decrease by 6.84% and the average robot battery consumption reduces.

In all examined cases, some requests that cannot be fulfilled by the AMR service and
therefore need to be outsourced. One possible reason is the inability of the considered public
transit system to handle a large volume of requests simultaneously. Currently, the public transit
system has a limit of 8 requests, which is insufficient to accommodate the high number of
requests ranging from 100 to 300. Another factor that could cause the infeasibility of the robot
service is the maximum travel time allowed for the robot, which is currently set to one hour.
As can be observed in Figure 4, some request nodes are located in remote areas of the studied
region, requiring long routes that exceed the robot's battery capacity. Lastly, the narrow time
windows assigned to the requests, currently set to 1200 seconds, may also contribute to the
infeasibility as they might be too restrictive for some robots.
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To investigate the underlying causes of the infeasibility, we conducted a sensitivity analysis
on three input parameters: transfer capacity, AMR’s battery capacity, and request half time
window. We tested various values for each parameter, while all other parameters remain
unchanged. Ultimately, we measured the percentage of requests that the AMR service was able

to fulfill, as shown in Figure 7.

100%
80%
60%
40%

20% /

900 1800 2700 3600 4500 5400 6300 7200
robots maximum travel time (seconds)

% of requests served by AMRs

(@) AMRs usage by robot maximum travel time

97.0%

96.0%

95.0%

94.0%

93.0%

% of requests served by AMRs

92.0%
300 600 900 1200 1500 1800 2100 2400
request half time window (seconds)

(b) AMRs usage by request half time window

96.0%

94.0% /

»
I
3
=

% of requests served by AMRs

90.0% /
0 2 4 an sﬁfer capaciy (r:bm) 10 12 14
(c) AMRs usage by transfer capacity
e lv_100 tlv_150 tlv_200 tly_250 tiv_300

Figure 7: AMRs usage by different parameters settings
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In each of the sub graphs presented, it is evident that there exists a point where the
utilization of the AMR’s service reaches its maximum. Figure 7(a) clearly illustrates this trend,
where the AMR's maximum travel time is set at 5,400 seconds. However, it can be observed
that a significant portion of the utilization is already achieved with a more practical limit of
3,600 seconds. This aligns with the specifications of AMRs used in various industries.
Furthermore, the parameter related to the request half time window presented in Figure 7(b)
proves to be restrictive up to a time limit of 2,400 seconds, which represents a time window of
40 minutes. This duration remains valid and suitable for numerous delivery scenarios,
including fast-food delivery and e-commerce. Finally, as can be observed in Figure 7(c), the
transfer capacity constraint becomes non-binding with a maximum value of 6 robots. This
indicates the maximal number of robots that is simultaneously onboard a public transit vehicle
in the delivery service. In conclusion, all three parameters demonstrate their effectiveness
through the utilization of realistic and reasonable values. These values are not only feasible but

also applicable in real-world usage scenarios.
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6. Conclusions and future directions

This study examines the potential of using public transit to enhance AMRs delivery services.
It addresses this problem through the development of two mixed integer programming
formulations, an arc-based formulation, and a path-based formulation. A column generation
framework developed using the path-based model is capable of handling large problem
instances within reasonable processing times. The results of the study indicate that using public
transit in conjunction with AMRs can significantly increase the service range and reduce
energy consumption. The study highlights the potential of AMRs in urban logistics and the
need to further explore the integration of AMRs with other forms of transportation.

We see several directions for further research. First, the models developed in this study can
be extended to consider recharging activities during the planning horizon, enabling the AMR
to serve multiple requests sequentially. Second, the dynamic version of the problem, in which
service requests appear on-line should be examined. The static models and column generation
approach developed in this study may be utilized in a rolling-horizon framework designed for
this purpose. Lastly, the integration of AMRs and public transit can be evaluated within a truck-
and-robot concept. Adding another mobility layer to this approach may further increase the

flexibility and efficiency of this last-mile delivery concept.

32



Acknowledgements

We are grateful for the generous Excellence Scholarships awarded to Yishay Shapira during
his studies by The Israeli Smart Transportation Research Center (ISTRC) and the Shlomo

Shmeltzer Institute for Smart Transportation.

References
Alfandari, L., Ljubi¢, 1., & da Silva, M. D. M. (2022). A tailored Benders decomposition

approach for last-mile delivery with autonomous robots. European Journal of Operational
Research, 299(2), 510-525.

Allen J, Piecyk M, Cherrett T, Juhari MN, McLeod F, Piotrowska M, Bates O, Bektas T,
Cheliotis K, Friday A, et al., 2021. Understanding the transport and co2 impacts of on-
demand meal deliveries: A london case study. Cities 108:102973.

Amazon Z00X, 2022. What's next for Amazon Scout?. URL
https://www.aboutamazon.com/news/transportation/whats-next-for-amazon-scout,
accessed April 30, 2023.

Baldacci, R., Bartolini, E., & Mingozzi, A. (2011). An exact algorithm for the pickup and
delivery problem with time windows. Operations research, 59(2), 414-426.

Benarbia, T., & Kyamakya, K. (2021). A literature review of drone-based package delivery
logistics systems and their implementation feasibility. Sustainability, 14(1), 360.

Berbeglia G, Cordeau JF, Gribkovskaia |, Laporte G, 2007. Static pickup and delivery
problems: a classification scheme and survey. Top 15(1):1-31.

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery
problems. European journal of operational research, 202(1), 8-15.

Boysen N, Fedtke S, Schwerdfeger S, 2021. Last-mile delivery concepts: a survey from an
operational research perspective. Or Spectrum 43(1):1-58.

Boysen, N., Schwerdfeger, S., & Weidinger, F. (2018). Scheduling last-mile deliveries with
truck-based autonomous robots. European Journal of Operational Research, 271(3), 1085-
1099.

Brouer, B. D., Alvarez, J. F., Plum, C. E., Pisinger, D., & Sigurd, M. M. (2014). A base integer
programming model and benchmark suite for liner-shipping  network
design. Transportation Science, 48(2), 281-312.

Caris, A., & Janssens, G. K. (2009). A local search heuristic for the pre-and end-haulage of

intermodal container terminals. Computers & Operations Research, 36(10), 2763-2772.

33



Chen C, Demir E, Huang Y, Qiu R, 2021. The adoption of self-driving delivery robots in last
mile logistics. Transportation research part E: logistics and transportation review
146:102214.

Choi, E., & Tcha, D. W. (2007). A column generation approach to the heterogeneous fleet
vehicle routing problem. Computers & Operations Research, 34(7), 2080-2095.

Choudhury S, Knickerbocker JP, Kochenderfer MJ, 2019. Dynamic real-time multimodal
routing with hierarchical hybrid planning. 2019 IEEE Intelligent Vehicles Symposium (1V),
2397-2404 (IEEE).

Christiansen, M., & Nygreen, B. (1998). A method for solving ship routing problems with
inventory constraints. Annals of operations research, 81(0), 357-378.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations
Research, 8(1), 101-111.

De Maio, A., Ghiani, G., Lagana, D., & Manni, E. (2023). Sustainable last-mile distribution
with ground drones and public transportation. Working Paper.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (Eds.). (2006). Column generation (Vol. 5).
Springer Science & Business Media.

FedEx Roxo, 2022. Meet roxo, the fedex sameday bot. URL https://www.fedex.com/en-
us/innovation/ roxo-delivery-robot.html, accessed October 26, 2022.

Fink, M., Desaulniers, G., Frey, M., Kiermaier, F., Kolisch, R., & Soumis, F. (2019). Column
generation for vehicle routing problems with multiple synchronization
constraints. European Journal of Operational Research, 272(2), 699-711.

Fortune business insights official website, 2023. Delivery Robots Market, Share & Impact
Analysis. URL https://www.fortunebusinessinsights.com/delivery-robots-market-106955

Gendreau M, Nossack J, Pesch E, 2015. Mathematical formulations for a 1-full-truckload
pickup-and-delivery problem. European Journal of Operational Research 242(3):1008—
1016.

Ghiani, G., Guerriero, F., Laporte, G., & Musmanno, R. (2003). Real-time vehicle routing:
Solution concepts, algorithms and parallel computing strategies. European journal of
operational research, 151(1), 1-11.

Gronalt, M., Hartl, R. F., & Reimann, M. (2003). New savings based algorithms for time
constrained pickup and delivery of full truckloads. European Journal of Operational
Research, 151(3), 520-535.

Grippa, P., Behrens, D. A., Wall, F., & Bettstetter, C. (2019). Drone delivery systems: Job

assignment and dimensioning. Autonomous Robots, 43, 261-274.

34



Ham, A. M. (2018). Integrated scheduling of m-truck, m-drone, and m-depot constrained by
time-window, drop-pickup, and m-visit using constraint programming. Transportation
Research Part C: Emerging Technologies, 91, 1-14.

Huang, H., & Savkin, A. V. (2020). A method of optimized deployment of charging stations
for drone delivery. IEEE Transactions on Transportation Electrification, 6(2), 510-518.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints.
In Column generation (pp. 33-65). Boston, MA: Springer US.

Janssens, G. K., & Braekers, K. (2015). An exact algorithm for the full truckload pick—up and
delivery problem with time windows: concept and implementation details. International
Journal of Computer Aided Engineering and Technology, 7(2), 260-272.

Jennings D, Figliozzi M, 2019. Study of sidewalk autonomous delivery robots and their
potential impacts on freight efficiency and travel. Transportation Research Record
2673(6):317-326.

Jeon, A., Kang, J., Choi, B., Kim, N., Eun, J., & Cheong, T. (2021). Unmanned aerial vehicle
last-mile delivery considering backhauls. IEEE Access, 9, 85017-85033.

Liu, S., Hua, G., Cheng, T. C. E., & Dong, J. (2021). Unmanned vehicle distribution capacity
sharing with demand surge under option contracts. Transportation Research Part E:
Logistics and Transportation Review, 149, 102320.

Libbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations
research, 53(6), 1007-1023.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization
problems. Handbook of applied optimization, 1(1), 65-77.

Mourad A, Puchinger J, Van Woensel T, 2021. Integrating autonomous delivery service into a
passenger transportation system. International Journal of Production Research
59(7):2116-2139.

OpenRouteService of Heidelberg University’s. URL github.com/GIScience/openrouteservice,
accessed March 01, 2023.

Ostermeier, M., Heimfarth, A., & Hiibner, A. (2022). Cost-optimal truck-and-robot routing for
last-mile delivery. Networks, 79(3), 364-389.

Paradiso, R., Roberti, R., Lagana, D., & Dullaert, W. (2020). An exact solution framework for
multitrip vehicle-routing problems with time windows. Operations Research, 68(1), 180-
198.

35



Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2007). A survey on pickup and delivery
problems. Part 1l: Transportation between pickup and delivery locations, to appear:
Journal fir Betriebswirtschaft.

Pugliese, L. D. P., & Guerriero, F. (2013). A survey of resource constrained shortest path
problems: Exact solution approaches. Networks, 62(3), 183-200.

Rist, Y., & Forbes, M. (2022). A column generation and combinatorial benders decomposition
algorithm for the selective dial-a-ride-problem. Computers & Operations Research, 140,
105649.

Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery
problem. Transportation science, 29(1), 17-29.

Starship, 2022. Starship  technologies:  Autonomous  robot delivery. URL
https://www.starship.xyz/ business/, accessed October 26, 2022.

Tel Aviv GIS portal. URL https://gisn.tel-aviv.gov.il/iview2js4/index.aspx, accessed March
01, 2023.

Wang, Z., & Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation research
part B: methodological, 122, 350-364.

Xia, Y., Zeng, W., Zhang, C., & Yang, H. (2023). A branch-and-price-and-cut algorithm for
the vehicle routing problem with load-dependent drones. Transportation Research Part B:
Methodological, 171, 80-110.

Yu, M., Nagarajan, V., & Shen, S. (2022). Improving column generation for vehicle routing
problems via random coloring and parallelization. INFORMS Journal on
Computing, 34(2), 953-973.

Zang, Y., Wang, M., & Qi, M. (2022). A column generation tailored to electric vehicle routing
problem with nonlinear battery depreciation. Computers & Operations Research, 137,
105527.

Zhang J, Campbell JF, Sweeney Il DC, Hupman AC, 2021. Energy consumption models for
delivery drones: A comparison and assessment. Transportation Research Part D:
Transport and Environment 90:102668.

36



xRN
D012 NRT PAPIOV KW K12 DWW .MINIIRT DIV SNIWAYA 1DIN2 INMONT NPNVIRT 737717 D731
D°PD0M 237 373 MR MIITAT Y DOV 2°I0R 2OUIIT L, TPK MDYAL .OYMIN0IN 207201 2201 DY
W MW MY DR 79230 INI20PY A92I0 MYEARA 2OV 20012177 LTI AP OmMown MY

0RYR AWIPW Hw MW 01777 22012100

D°PD07 9R 2PVI2,NIVWA IR AV MIAMN 50N 2°INDN 2OV YW OX 72 NN NPOW 1T 7TV
MNPR2Y MOWnNT W 72°70 NTIPI2 ,AI0°K NTIPIR NI AWPR2 93 IWRD MWP2 M2y 2mown SMvw
P17 .0NY AN MYEARD MW DWW SW DROXIVIDT IR 2°IM2 UK LIOR MTIPI MWL T
D28 771200 523 ¥ Y01 1AT2 PR 720N 02X DY 07w V0N 2°p00 YXAL 20 worb
MW N0 NI ,NPWRY :NIIATIT 150 72172 NI T 72077 .772105 NANIR 007X PR 0012177
LI MW W NP L0720 0°IPRA1,7292 7979102 W 7 ¥ ¥R 9197 19K 11217 012 0OIRY

.NDYNA NRYIOT A°A0IRT NI NNnos

pickup and delivery ) m17°7 79°00n7 MORT NPV DW TP 7PN 010 AT e 17217 11000 1Ya
PDINA 7292 NAR AWR2 T¥ NI 9127 ¥IANAW o1 ARYIND) 2377 NP HTIN2 Mt N3 (problem
NINWP 001N M1 ,0%2W3A 27IWM NN 271 "M0°1 *IW 1IN0 .772AN "WXAR 1901 2w 117w 191 (PI15N7
W L,DTIPTIP W P2 VI HW NOIWOR AYIN 9O NWTDN 771X X1 PWRIT .0°21701 001N M0
MO°15w 71 .(1121M) AW 75 72V N2 207 21901 DR NN2D 70N V1AM DV 2RI D707 XN
YDINTT 211DRN OY T NIMYA 77X DT 2IWORT 0°17017 1501 ,INY 2HpomIp 1121 w1 071701 D0An

.0°012777 7901 MWPAT 19501 11AD

D°WOR DO1907 2w NONWRD XIAP 02T AR MTINY N0 DY AN T YA DY 12ana? nin by
TN RPI 219017 NPV NOIWAT VAT DR O°103R 1R 197 IR MW DWRAY 1A KW AT 9 My
2IX°1 MYYNND .IWAT DOV DK TINDY 970 2°29W AY2IR 9Y2 SNRIT DNINOR 1IN .0%ARWN SX17OK NN
WA 2ORWR AR ,NI027 .71 92 N0 WO DY 2NN 501 DR 2PNOMON 1R NPWRIT Y22 IR0
2IWOMT AT DR NPMYAYA DR OXNEY 117 NMIIWORD 128 MWD .N°3AT 12 N1PY2 °NN 1907 7IN97 070 Hapnn

M7 21200 79900 SW A 92 M2y woTIn

P72 10N MWR2 15 7V 5w HTA2 2OV NNOY 212° MNWRT 0012 DTINY TIWAW NIRIA *10°17 NIRYIN
SY 0 .MTT2 DI TN Mwpa 150 7Y 5w nvva 7Ine° 7190 mmay 7190 w2 91700 00121 P1n
WY TR0 NI PN DY NMIRXINT ,2°2R 2N 1PYAR 210K 221012 WY TN M2 89P0 107,10
TN MWP2 HW N 2173 990M2 990D 07 IWORAY 2°VIINT DW MW AN DX 2077 N012Y 772003
0012 MOWH QXMW N2 21270 HW 02HROXIVIDT MINT DX WOITA AT PN 07w A°A0IR2 100N

SPIWONI NIDNT N1V NINDY NOWIYA WA PH0M MUY AMANN NIYENKRA 2NNV 220N

37



252N 50 AYIDRMIN

DN TPNN DXINRND 190N N2 JIW»DI TTON) YN WY NOTIND NUIPON
IINID-DTR VY

QITIPWA NI VAP MITIAY 919 DY

N2 2NN MYIRN2 2779757 01219

NOTINA PNVIDINN THODN ININD NXRIPY 79X NTIAYI WNN DY NN
YN
YT-DY

NTDW s

Y905 NN V7T HMINA NMOWYN NOTIND NPINN TIVI 1PN

T7aWN YOO



252K BN NYIDRN

DYNTPNN DXINND I90N N2 JIY»I ITORI YN YUY NOTIND NVNIPON
IINID-DTR VY

QTP NI 2P MNITIAY P19 NUOw

DM M2NN MYIRRD 27797257 2129

NOTINA PNVIDIDININ THDIN ININN NXIPY 90X NTIAYD WNN DT 2N
VYN
YTI-DY

RIDL 2

779V 190D



